
Real-Time Pencil Rendering
Juan Pacheco

Digipen Institute of Technology Europe-Bilbao

Abstract

This paper contains the implementation of
a non photorealistic real time rendering
technique that simulates pencil drawings
of 3D scenes. This implementation is
based in the paper done by the
POSTECH university [Lee et al. 2006]
were they describe pencil rendering and
the interaction among curvatures, papers
and pencil materials. The objective of this
paper is to be able to simulate human
errors when drawing to be able to render
objects that look like they were
hand-drawn. This implementation contains
a pipeline divided in edge detection and
composition, inner surface rendering with
pencil materials, a composition pass for
the resulting two textures and a lighting
pass for the two textures. The technique is
implemented almost in GPU using
OpenGL, except for a preprocessing part
that is precomputed in CPU.

1 The Pipeline

Figure 1: Original Pipeline [Lee et al. 2006]

On one hand, in the original paper the
pipeline (see Figure 1) divides the work
into two parts also, the contour pass and
the interior pass, and also divides each
part into a preprocessing step and a
run-time process. On the other hand, my
implementation (see Figure 2) follows
almost every step on that pipeline but
erases some parts. First of all, the contour
texture generation does not appear in the
pipeline as it is not specified in the original
paper, they use it but they do not explain
where it comes from, so for my technique I
decided to substitute that part with the
pencil texture generation. Secondly, the
paper normal texture generation step that
they propose, is based on generating
noise from an algorithm like Perlin noise or
Worley noise to generate a heightmap and
finally to convert it to a normal map. In my
case I decided to not implement that part
as I think it was not as relevant to the
technique itself, so I decided to download
some normal map textures of papers for
the implementation. Finally, in the interior
shading part, they perform a brightness
adjustment step to make distinctions
between bright and dark spots by simply
using a square root in the final color,
however, after implementing it, I did not
like the result, so I decided to leave it out.

Apart from that, my pipeline includes an
extra step where lighting is computed in a
simple way to make a much better looking
result.

Figure 2: My modified Pipeline

2 Edge detection

First of all, in this technique we will apply
and edge detection filter [Nienhaus and
Doellner 2003] in image space that will
use the normal and depth buffer. The idea
of this filter is to detect discontinuities in
the normal buffer to store them in the RGB
channels of a texture and to detect
discontinuities in the depth buffer to store
them in the A channel of the same texture.

Figure 3: X Neighborhood [Nienhaus and
Doellner 2003]

The original paper describes a
neighborhood (see Figure 3) of 3x3
around the pixel that we are shading.
Also, three types of edges are described:
the silhouette edges that are edges
shared by a front-facing triangle and a
back-facing one, the border edges that are
edges to only one triangle, and the crease
edges that are edges shared between two
front-facing triangles.

The first two appear in discontinuities of
the depth buffer and the last one appears

on discontinuities of the normal buffer. For
detecting these kind of edges the following
formulas are used.

𝐼
𝑅𝐺𝐵

= 1
2 · (𝑑𝑜𝑡(𝐴

𝑁
, 𝐻

𝑁
) + 𝑑𝑜𝑡(𝐶

𝑁
, 𝐹

𝑁
))

𝐼
𝐴

= (1 − 1
2 · |𝐴

𝑍
− 𝐻

𝑍
|)

2
 ·

(1 − 1
2 · |𝐶

𝑍
− 𝐹

𝑍
|)

2

The equations will result in gray edges,
but as later we will want to perform
additive blending we will invert the RGB
channel.

Finally, for the RGB channel there are two
possibilities, computing it using
interpolated normals or computing it using
face normals (extrapolating them from the
depth buffer). If we use face normals we
will be sure that our geometry is right and
taken into account that the curvature is
analyzed with triangles itself, it makes
sense to use it them, however,
interpolated normals will bring details of
the normal mapping to the scene, which
could be desirable (see Figures 12-13).

3 Contour Shaking and
Distortion Plane

When drawing the contours, one of the
effects that we want to achieve is to mimic
the human error of drawing the edges not
perfectly straight. For this we will use the
sine wave equation [Lee et al. 2006] to
add errors to the UVs.

The idea is to generate something called
the “Distorted plane” (see Figure 4) in a
preprocessing step and then sample it
when drawing the contour to take into
account the generated error. For the
creation of it, we will first define the
parameters we want for the sine equation
(amplitude, change of phase, etc.), then

we will divide the screen space into
equally sized rectangles and to each
rectangle we will assign the corresponding
value of inputting the respective x and y to
the sine wave. In this technique the
distortion plane is computed in a compute
shader to make it faster, but a fragment
shader will work too.

The results generated by this plane when
applying it to the edges (see Figure 5)
make the contours to look distorted and
fulfills the proposed idea.

Figure 4: Distortion plane visually

Figure 5: Effect of distortion

4 Multiple Contours

The last important part of the contours, is
to imitate the tendency of drawing over
and edge multiple times when using a
pencil, for that, the idea is very simple. We
will generate an specific amount of
distortion planes and we will apply each
one of those planes to the contours to
generate new images. Then, we will
overlap those textures with additive
blending to showcase that human error
(see Figure 6). The original paper
recommends to choose between 3-5

planes, and after some tests, the result
looks good.

Figure 6: Multiple contours

Finally, for giving the edges that pencil
material, we will access the generated
pencil texture (see Section 5) each time
we distort the contours at the depth we got
in the lighting computation (see Section
9).

5 Pencil Texture Generation

Once again, when drawing an interior
surface on paper, we tend to draw multiple
overlapping strokes in the same place if
we want a darker result and we will draw
less strokes in sections where we want a
lighter result. To modulate this behavior,
we will create a 3D texture of 32 layers
[Lee et al. 2006], the first one being the
whitest and the latest one the darkest.

The idea is simple, we will have a single
stroke texture (in my case generated by
Paint), and we will draw it multiple times
over each layer. However, we have to take
into account that the first layer should be
entirely white, so we will start drawing
strokes at layer 1 instead of 0.

When drawing into a new layer, we will
first copy the previous layer onto it, then
we will draw a specific amount of strokes
in random Y positions of the texture and
we will add to them a little angle
perturbation to not make them perfectly

straight. The blending of the stroke and
texture goes in the following way:

//Get color of the previous

layer

vec3 previous_texture_color =

texture(previous_texture,

vec3(new_uvs,

previous_texture_depth)).rgb;

//Maximum stroke darkness that

can be increased

float ca =

previous_texture_color.r *

(1.f - pencil_color.r);

//If the pixel is white enough,

the darkness increase is reduced

if(previous_texture_color.r>0.9)

{

ca *= white_preservation;

}

//Update the texture color

float new_texture_color =

previous_texture_color.r -

stroke_darkness * ca;

In the if statement, we can see how if the
pixel is white enough, we will multiply the
maximum darkness increase by a value
that is a parameter that is usually between
0.1 and 0.3. We do this because usually in
drawings when a zone is white after some
strokes, it tends to remain white for the
entire drawing.

The result generated in this step (see
Figure 7) looks pretty accurate to what a
real pencil material could be, but is worth
mentioning that it is highly dependant on
the single stroke texture that we use.

Figure 7: Pencil texture [Lee et al. 2006]

6 Curvature Analysis

When shading a surface, we tend to draw
the strokes along the curvature of an
object, so this section will explain how this
is implemented.

Figure 8: Curvatures along an edge

First of all, we will define that each edge
will contain two curvatures, the maximum
one and the minimum one. These
curvatures tend to go in the direction of
the edge itself and in the perpendicular
direction (see Figure 8). For getting these
curvatures, the model followed on this
paper is the tensor field computation
estimation [Alliez et al. 2003]. The idea is
to estimate for each vertex of the mesh a
tensor, then get the eigenvalues of that
tensor and finally from those eigenvalues
get the curvatures. For that, the following
formula is used.

𝜯(𝑣) = |𝐵| − 1 · Σ β(𝑒) · |𝑒 ∩ 𝐵| · ê · 𝑒𝑇

The elements of this formula consist of:

● v : The input vertex.

● |B| : Area of the neighborhood of
edges around v.

● e : An edge of the neighborhood B.

● : Signed angle between theβ(𝑒)
normals shared by the edge e.

● : Length of e inside|𝑒 ∩ 𝐵|
neighborhood B.

● : Unitary vector in the direction of ê
e.

And the pseudocode the algorithm should
follow is the next one:

r = BBscale * 0.01;

for(vertex in mesh)

{

Create sphere of radius r

aaaaround vertex;

Get edges inside the sphere;

Compute the area of that

aaaneighborhood;

for(edge in neighborhood)

{

Compute the summation of

aaaaaathe previous equation;

}

Compute the tensor at vertex;

Get the eigenvalues and

aaaeigenvectors;

}

After computing the eigenvalues we will
get 3 results, the eigenvector associated
to the minimum one will be the normal of
the vertex, the eigenvector associated to
the maximum one will be the minimum
curvature vector and the other value will
be associated to the minimum curvature.

Some things worth mentioning are that in
the followed paper as the idea is to do an
anisotropic filtering they perform a lot of
steps after this one, but in my approach I
decided to keep it simple and to normalize
the curvatures that were computed. Then,
the neighborhood that we create has the
shape of a geodesic disk, so instead of
computing the exact area, I did an
estimation by taking the Bounding Box
(BB) of the neighborhood and then
compute the length of the scale and that
would be the diameter of the circle. Finally,
this process is very heavy computationally
speaking, and it takes some time to
analyze complex meshes, so an
optimization that I implemented was to
store the curvatures in a file and the next
time the mesh is loaded it will read them
from the file itself.

Figure 9: Curvature vectors of Serapis

7 3-Way Blending and Cross
Hatching

After getting the curvature for each vertex,
the idea proposed by the original paper is
to draw a pencil texture for each minimum
curvature of the vertices of a triangle, so
we will draw in screen space the pencil
texture and we will rotate it by the
curvature of the respective vertex.

For that, we will assign to each vertex
three curvatures, its minimum one and the
other minimum curvatures of the same
triangle vertices. Then we will project the

curvatures using the P * V * M matrix.
Finally, we will get the angles generated
by those curvatures and we will negate
them to perform inverse rotations on the
UV coordinates of the pencil texture to
draw the pencil textures along those
curvatures.

As we are drawing the pencil texture with
3 curvatures, we will get 3 directions, and
if we blend them (using a weighted sum)
we will get a blend of the pencil stroke in 3
different directions (see Figure 10).

After that, the possibility of cross-hatching
can be implemented. Knowing also the
maximum curvatures, we could do the
same process but instead of a 3-way
blending, we could perform a 6-way
blending, so we will merge 6 different
pencil textures.

Figure 10: 3-way blending [Lee et al. 2006]

Figure 11: Cross hatching

8 Paper Interaction

This stage of the pipeline consists of trying
to modulate the black lead stains that are
left by a pencil when drawing on a rough
paper. For that, we will get a normal map
that will represent the roughness of the
paper.

Once we got it, in the 3-way blending
computation we will add the next formula :

𝐶'
𝑇

= 𝐶
𝑇
 + µ

𝑃
· 𝑑𝑜𝑡(𝑑, 𝑛)

In this formula, d represents the stroke
direction, and n is the normal of the paper.
With this, we achieve the effect of leaving
more lead stains whenever the stroke
direction is opposite to the normal of the
paper. Finally, is a parameter thatµ

𝑃

defines the weight of the paper (usually
good between 0 and 0.1).

9 Lighting

The idea of the lighting in Real Time pencil
rendering is quite simple. We will take
advantage of deferred shading and we will
compute two factors :

● Attenuation.
● Cosine factor.

The attenuation is computed the same
way it is computed in deferred rendering is
computed by :

𝐶𝑜𝑠𝑖𝑛𝑒𝐹𝑎𝑐𝑡𝑜𝑟 = 𝑚𝑎𝑥(𝑑𝑜𝑡(𝑁, 𝐿), 0. 𝑓)

The purpose of this computation is to
access the pencil texture in the Z layer. If
a pixel is facing directly a light we want it
to look white, so it will have to access the
layer 0, so when accessing the pencil

texture we will invert the given result in the
lighting computation. As we are following a
deferred rendering approach, this factor
can be stored in a texture for optimization.

This approach works well with edges and
surfaces, and it will be applied when
distorting edges and in the 3-way blending
of the surfaces.

10 Composition

This is the last step of the pipeline. Once
we have the two textures we will have to
merge them using additive blending and
them invert the result one last time to get
the wanted black colors. Also, we can
pass the paper color as a parameter to
multiply it by the merged color to not
necessarily make a perfect white paper.

11 How to use the demo

The demo itself is quite simple, you can
move around the scene with the mouse
and the WASD keys and you have an
editor window at the top right.
In that window (in the RTPR tab) you can
tweak some parameters as:

● Enable/Disable
● Render max/min curvatures
● Use face/interpolated normals
● Edge overlap number
● Render contours
● Render surfaces
● Paper weight and texture
● Offsets for the lighting
● Enable/disable lighting

Then in the General tab, you will be able
to change between scenes and in the
Deferred rendering part, you will be able to
change the number of lights.

12 Results

As we can see in the pictures, the results
look very cool and pretty similar to the
ones shown in the original paper. It is
worth mentioning that, although it works in
real-time, it looks better when the scenes
are static as most of the algorithms are
implemented in screen space so when
moving through the scene some artifacts
appear.

We can appreciate how the pencil material
works and how the interaction with the
paper happens correctly. Finally, we can
see how although the cross-hatching
works, after crossing a lot of sections the
visual hatching starts to be noticed less,
so that could be a little bit improved.

To see more results check from figure 12
to 15.

13 Possible Improvements

Some things that I think could be improved
for my technique and that could be
implemented in the future are a faster way
to analyze the curvature, the addition of
pencil colors to not only draw in black, the
computation of the normal maps for the
papers, and the implementation of
shadows. Apart from that, some
improvements on the cross-hatching
technique could be done to be able to
appreciate the result more.

Finally, other results could be explored to
be able to make this technique look better
in a Real-Time environment.

I am sure that all of these characteristics
could be implemented in a feasible
amount of time considering almost all of
the work is already done.

14 Development Problems

The problems that I found when following
the original papers were the next ones.

First of all the curvature analysis was a
little bit difficult to understand at first
because it talked about topology and I do
not have a lot of knowledge in that area.

Secondly, as the papers were a little bit
old, they used things of OpenGL that were
not available in newer versions, so I had
to rethink them to apply them in modern
OpenGL

Then, as I already mentioned, the 3D
texture generation is very important to
have a similar result to the original paper,
but still I am happy with how it ended.

Finally, some things such as the contour
texture and some blendings were not
defined at all, so those things had to be
reimagined.

15 Conclusions

After implementing this technique, I think
that it looks really realistic considering the
tools that are available right now and I
also think similar approaches could be
expanded to develop new techniques in
the non photorealistic rendering world.

Also, as already mentioned, I do not think
this a good method for Real Time scenes
but more for static ones, so I think it is
great for programs like Blender or 3DS
Max where you can do static enhanced
renders.

16 References

HYUNJUN LEE, SUNGTAE KWON,
SEUNGYONG LEE. 2006. Real-Time
Pencil Rendering. 1-9

MARC NIENHAUS, JUERGEN
DOELLNER. 2003 Edge-Enhancement -
An Algorithm for Real-Time
Non-Photorealistic Rendering. 3-4

PIERRE ALLIEZ, DAVID
COHEN-STEINER , OLIVIER
DEVILLERS, BRUNO LEVY, MATHIEU
DESBRUN. 2003. Anysotropic Polygonal
Remeshing.7-11a

Figure 12: Face normals

Figure 13: Interpolated normals

Figure 14: Serapis in Sponza

Figure 15: Serapis in Sponza with lighting

